
International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 843
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

 Introducing Ownership Types to
Specification Design

Jagadeeswaran T1*, Senthilkumaran U2
1Research Scholar, 2Associate Professor

School of Information Technology & Engineering, VIT University, Vellore, TN, India,
 jagadeest@gmail.com
*Corresponding author

Abstract: In an object oriented program, Ownership helps to control aliasing and assists in structuring object
relationships in a program. By using this ownership representation, an owner object can access the reference
objects for verification purpose. Ownership types help the programmer track information about object aliasing.
This paper aims to introduce ownership types information to UML/OCL for specification design. This helps the
implementations easier to develop and less prone to error.

Keywords: Aliasing, OCL, Ownership, Spec#, UML, USE.

—————————— ——————————

I. Introduction
In recent years, model based transformation is getting more popular [1], i.e. code generation from system
design. The Unified Modeling Language (UML) model makes it easy to describe the object oriented program
components clearly at the system design stage. The UML's class diagram depicts the details of a class of the
model in an object oriented system. The relationship restrictions with other classes can be described by
associations which are called UML constraints. Association multiplicities define the connection relation of
classes to each other. Object Constraint Language (OCL) allows users to express textual constraints about the
UML model [2][3]. So the UML class diagram with OCL constraints can describe all the elements of object
program constructs with their specification. At the moment, UML/OCL does not allow mentioning the object
references with ownership type in the current context directly. In this paper, we explicitly allow the reference of
other object by adding ownership types to the UML/OCL, so that we can implement further with no bother
about ownership type constraints based on work done in [4].

1.1 Motivation
Nowadays, software is developed via automatic code generation from software designs to implementation when
using formal specification and static analysis to reduce the development effort [5] [6]. The modeling approaches
are used to describe the client's specification. In a program implementation, we document objects and those
objects which they own that means have exclusive write access. We refer to these objects as the “owned
objects". It is important to know what objects an object owns for purpose of static verification [7]. The correct
software maintains the consistency of a program's data throughout its verification. If it fails to maintain the
consistent details about ownership, the system may fail and lead to a number of errors during program
development [8]. If we know the information about the ownership during the design phase, our implementation
will be easier and less prone to errors.

This paper makes this information available in the software design phase to improve the quality of design
specification. It presents ownership type constructs at the software design phase for dealing with aliasing in
programming languages. Then it transfers these ownership type constructs to the implementation phase for
actual development and practical evaluation of these constructs. We chose the USE (The UML-based
Specification Environment) specification to describe the program's specification and Spec# to develop the code
at the implementation level.

II. Background

2.1 USE
The USE tool, which is based on a subset of UML and OCL, allows specification to be expressed in a textual
format for all features of a model, e.g., classes, attributes in the UML class diagrams. Additional constraints are
written using OCL expressions [9]. The USE specification describes the program's specification at the
specification phase. The reason behind this selection is its features that is written in the text format and can
easily convert to corresponding graphical representations using textual editor: Class diagram, Object diagram.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 844
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Also it performs the verification of OCL constraint structures easily. In the text format of USE specification, we
can add the ownership constraints as comments with no changes made in USE tool. Therefore it makes it easy to
implement the ownership addition in their specification.

2.1.1 UML Model Specification:
Every UML model in USE has a name and an optional body. A model may contain Enumerations and Classes.
Each class has a name. It may have optional attribute and operation definitions. Classes can be linked together
via associations. It is possible to define Association multiplicities and role names along with Association
definitions. Fig.1 shows an USE specification of `CarSystem' and corresponding UML diagram generated in
USE tool.

Fig. 1. An USE Specification and Corresponding Class Diagram

Constraints: The constraints segment of a specification follows after the keyword constraints in USE
specifications. Any number of invariants may be defined in a class context. In addition, we may define
preconditions and postconditions to specify the conditions over operations. We can add names for every
constraint in the constraint definition segment.

2.2 Spec#
We chose Spec# to develop the code at the implementation level. The reason behind the Spec# selection is that
provides support for encoding ownership relationship to tackle the aliasing [10]. Spec# has run time verifier to
verify the specification constraints over the C# code. Spec#'s specifications are not just comments, but those are
executable [3].

2.2.1 Dynamic ownership in Spec#:
Formal specifications are mathematically based techniques which are used to ensure the correctness of software
by precisely expressing a program's properties. These are not executable specifications. Specification properties
are typically simple safety properties, non functional properties or full behavior properties. Nowadays, number
of tools and languages has been introduced for formal specifications e.g., Key system for JML verification [11].

Dynamic ownership systems enable ownership transfer in the expose blocks during program execution.
Dynamic ownership has been implemented in the Spec# language [12]. This dynamic ownership is supported by
three major constructs: Object topology, ownership types and representation exposure. In Spec#, an object can
refer to other objects for the internal definition of its data. The [Rep] keyword is used to annotate such attributes.
Therefore the ‘this’ object is declared as the owner of Rep referenced objects. Generally an invariant is a
constraint of a type over an element of the model, i.e., expressed by the OCL expression [3]. Object invariant is
a constraint of the object during its instance.

Object invariants must be true all the time for an object instance. During execution of a Spec# program, it is
necessary to break some object invariants for the purpose of verification [13]. Therefore Spec# introduces a
block statement called expose block. Invariants are temporarily broken by exposing an object using the expose
construct. The object invariants may be broken within an expose block [14] i.e., the object invariant cannot be
proved as a logically true inside the expose block. In the expose block, an owner is mutable. Therefore the
current owner is the owner of the referenced object. At the end of an expose block, the object invariant must
hold. This ownership transfer supports the program verification in the dynamic ownership system.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 845
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

2.3 Properties of Ownership Types
In this paper, ownership types representation mainly specified in three annotations: Rep, Peer & Additive. Same
ownership objects are represented `peers' or `siblings' [15]. Some objects are referred as reference of an owner
object, are called `reference' objects. Additive is used in specification inheritance. These are explained in detail
as follows.

Rep: `Rep' [13] expresses that a referenced object is owned by current object, that is, if a class context has a
`Rep' reference then `this' objects is the owner of referred object. This enables one owner which can access other
objects to modify during the verification. If the `Rep' field refers number of objects as array, then each element
in that array can hold by this owner.

Peer: `Peer' expresses that the owner is same [16] for current object and reference object. The current object and
the referenced object share the same owner and are therefore in the same ownership context or same aggregate
[5]. These objects have equal relationships. That means, the class has a reflexive association of it as `Peer'. If
`Peer' field refers number of objects then those elements express as the array of the peer objects.

Additive: Specification contracts can be inherited in Spec#. Spec# supports specification inheritance by
strengthening postconditions and class invariants and weakening preconditions. Therefore we can add additional
postconditions and invariants which specify properties of superclass attributes. If an attribute can be overridden
in a subclass, this must be highlighted in the superclass. Spec# introduces the [Additive] keyword to highlight
the attributes those mention in the subclass invariants. To access superclass attributes or methods, [Additive]
ownership is used. An additive expose is needed in method inheritance.

III. Our approach
In this paper, we introduce an approach, called U2S#, which allows the specification of references to other
objects and expose blocks during the software design phase. Then U2S# helps to generate the code skeleton
with ownership details and expose blocks inserted in the correct place in the implementation code. An object's
property is accessed by other objects mainly during constraint specification. The objective of this paper is to
highlight references to other object during the specification phase and transform the corresponding ownership
type constraints to the implementation. This section describes the modifications that we provide in the USE
specification language and the support which we add to the USE tool to allow addition of ownership details.

3.1 Adding Ownership type constraints to USE
U2S# adds the ownership annotations of Spec# to the given UML/OCL model based provided by the USE tool.
To add ownership type constraints in the USE tool, we introduce a new grammar for the definitions of Attribute,
Operation and Association. The modified syntax is shown in next sections.

3.1.1 Association Syntax:
An association is an inter relationship between two classes or models in a UML diagram. It shows the logical or
physical combinations or links of instances of those models in some formal manner [17]. An association
relationship in UML describes the role names between the classifiers and number of objects acts as role. The
main challenge here is the addition of ownership type constraints to UML. Within a current context, a graphical
dot in the association link is used to denote the ownership. Standard UML notation does not allow the
specification of explicit ownership [18][19]. But in this paper, we introduce the ownership type notion which
allows accessing the object of another class.

In this paper, ownership types are specified using two keywords in the association: [Peer] and [Rep]. This
corresponds to the Spec# syntax for the same. In our USE specifications, association ends have the provision to
specify these ownership type constraints. Normally association relations are represented in the USE tool by
naming association names, classes and role names. This paper introduces a new keyword ownership followed
by ownershiptype to name ownership type constraints as shown in the following syntax.

Syntax:
<associationdefinition> ::= (association|composition|aggregation)
<associationname> between
<classname>[<multiplicity>][role<rolename>][ordered][--ownership<ownershiptype>]
<classname>[<multiplicity>][role<rolename>][ordered][--ownership<ownershiptype>]
end

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 846
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

<multiplicity> :== (*| <digit> f <digit> g[..(*| <digit>f<digit>g)])
f,(*| <digit> f<digit>g[..(*| <digit> f <digit>g])g
<associationname> :== <name>
<rolename>:==<name>
<ownershiptype>:==(Rep|Peer)

3.1.2. Attribute and Method Syntax:
Like association definition, this paper introduces the [Additive] keyword in the definition of attributes and
operations as comments. Each attribute is followed by --[Additive] if it is an additive element which will be
inherited by its subclasses. In the subclasses, the inherited operations are represented by the [Additive] keyword.
If attributes and methods are not additive, then they are represented as empty followed by a semicolon.

Syntax:
 <classdefinition> ::=[abstract]class<classname>[< <classname>
f,<classname>g]
[attributes f <attributename>:<type>--[Additive]g]
[operations: f<operationdeclaration>--[Additive] . . . g]
end
<classname>::=<name>
<attributename>::=<name>

In our U2S# approach, the ownership annotations can be specified in the USE specifications as comments,
based on the modified grammar. Therefore we can generate the Spec# code skeleton. When generating the
Spec# code skeleton, U2S# takes the ownership types: [Rep], [Peer] and [Additive] as input. It also takes
association relation's multiplicities into account.

IV. Adding Ownership type constraints to UML/OCL and Mapping to Spec#
This section explains the addition of ownership type constraints according to the modified grammar of USE
specifications as discussed in section 3. In a U2S# implementation, a given UML model is transformed into its
corresponding Spec# code skeleton. U2S# adds the correct ownership types to the UML model according to the
client's requirements for the relationship between classes and attributes. This is achieved via annotations to the
USE specifications. U2S# deals with three major ownership types: [Peer], [Rep] and [Additive]. Therefore
U2S# adds these ownership type annotations as comments. We map the properties between USE and Spec#
based on our previous work [20].

4.1 Ownership addition with Association Ends
As discussed in section 3.1, an association relation between the classes plays an important role in determining
ownership type. Ownership types are referred by the keywords [Peer], [Rep] and [Additive]. In the USE
specifications, association ends normally record the property details such as association names, classes involved
and role names. In addition, we add the ownership type with association end as an example in Table 1.

Representation in USE U2S# approach
association holds between
Customer[1] role owner
CustomerCard [0..*] role cards
end

association holds between
Customer[1] role owner--ownership [Rep]
CustomerCard [0..*] role cards--ownership [Peer]
end

Table 1. Ownership Representation in Association Ends

In U2S# approach, it adds the ownership type followed by each role name as comments. The corresponding
representation with ownership types is shown in the right side of Table 1. Here, the role name owner is the Rep
owned object of class CustomerCard. In same manner, the role name cards is the Peer owned object of class
Customer in CustomerCard. As discussed in section 2.2, it is not necessary that object invariants evaluate to be
true throughout on execution. Therefore, Spec# supports the introduction of a frame called expose block. Object
invariants do not need to evaluate to true within an expose block [13]. At the end of each expose block, the
invariant must hold. Rep objects indicate that these are two owners. Therefore an expose block must be present
in the implementation. But Peer object indicates that the object belongs to same owner. Therefore it does not
need an expose block in its implementation.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 847
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

4.2 Ownership addition on Inheritance
We add the [Additive] annotation for each class attributes and operations as comments in USE to specify these
additive properties. Each attribute is followed by --[Additive] if it is an additive elements which will be
inherited by subclasses. In subclasses also, the inherited operations are represented by the [Additive] keyword to
denote ownership. If attributes and operations are not additive then they are left as empty as in the example in
Table 2. This code has two classes: Customer and CustomerSon. The operation addMoney is overridden in the
subclass and have access to its super class operation and attributes. Therefore they mentioned as [Additive].

Representation in USE U2S# approach
class Customer
 attributes
 name : String;
 amount : Integer;
 operations
 addMoney():Integer;
end
class CustomerSon < Customer
 attributes

 operations
 addMoney():Integer;
end

class Customer
 attributes
 name : String;
 amount : Integer;--[Additive]
 operations
 addMoney():Integer;--[Additive]
end
class CustomerSon < Customer
 attributes

 operations
 addMoney():Integer; --[Additive]
end

Table 2. Ownership Representation in Inheritance

V. Conclusion
This paper has presented an approach, named U2S#, for generating the Spec# code skeletons by adding
ownership type constraints to UML/OCL at the design phase of software development.

5.1 Properties supported by U2S#
U2S# supports the following properties:
1. Ownership type constraints can be added during the software design phase
2. Additive constraints can be added during the software design phase
3. It helps to generate the Spec# code skeletons with correct ownership type constraints for actual development
in the implementation phase.
4. The Spec# code skeletons will have the expose and additive expose blocks in the right place to avoid
ownership exposure errors.

5.2 Results
U2S# allows users to specify the ownership type constraints at the software design phase. It avoids complicating
code development i.e., tracking the ownership type constraints in the code implementation phase. U2S# ensures
the consistency of ownership types during code generation. It helps to transform correct ownership type in the
target language according to its specification at the design phase. U2S# ensures the consistency of program
elements during code generation.

References

[1] Frank Hilken, Philipp Niemann, Martin Gogolla and Robert Wille: From UML/OCL to Base Models:
Transformation Concepts for Generic Validation and Verification. In Theory and Practice of Model
Transformations - 8th International Conference ICMT, Held as Part of STAF 2015, L'Aquila, Italy, July 20-21,
(2015).
[2] Jordi Cabot, Martin Gogolla: Object Constraint Language (OCL): A Definitive Guide, In SFM 2012:
Springer 58 - 98 (2012).
[3] K. Rustan M. Leino and Peter Muller: Object Invariants in Dynamic Contexts. In ECOOP Object-Oriented
Programming, 491-515 (2004).
[4] Jagadeeswaran Thangaraj: Adding Ownership constraints to OCL in order to automatically generate Spec#
code skeletons. MSc Thesis, Maynooth University, Ireland Aug 2015.
[5] Hiroaki Shimba, Kentrao Hanada, Kozo Okano and Shinji Kusumoto: Bidirectional Translation between
OCL and JML for Round-Trip Engineering. In Software Engineering Conference (APSEC, 2013) 20th Asia-
Pacific: IEEE 49 - 54 (2013).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 8, August-2017 848
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[6] L. Carnevali, D. D'Amico, L. Ridi, E. Vicario: Automatic Code Generation from Real-Time Systems
Specifications. In International Symposium on Rapid System Prototyping, IEEE/IFIP (2009).
[7] Werner Dietl, Peter Múller : Object Ownership in Program Verification, Aliasing in Object-Oriented
Programming. Types, Analysis and Verification: Springer, 289-318 (2013).
[8] Carlos E. Otero : Software Design Challenges, IT Today Newsletter, http://www.ittoday.info/ITPerf
ormance Improvement/Articles/2012-06Otero.html (2012).
[9] Peter Múller: Modular Specification and Verification of Object-Oriented programs. PhD thesis, Fern
Universitát Hagen, Germany (2001).
[10] Rosemary Monahan, K. Rustan M. Leino: Program Verification using the Spec# Programming System. In
ECOOP Tutorial (2009).
[11] Bernhard Beckert, Reiner Háhnle, Martin Hentschel, Peter H. Schmitt: Formal Verification with KeY: A
Tutorial. In Volume of Lecture Notes in Computer Science Programming and Software Engineering, Springer
(2017).
[12] Mike Barnett, Rustan Leino, Wolfram Schulte and Peter Múller: Specification and Verification: The Spec#
Experience, Object Oriented Programming (2009).
[13] Mike Barnett, Rustan Leino, Wolfram Schulte: The Spec# programming system: An overview. In CASSIS
2004: Springer (2004).
[14] Rustan M. Leino, Peter Muller: Using the Spec# language, methodology and tools to write bug-free
programs. In LASER Summer School 2007/2008: Springer-Verlag, (2008).
[15] Dave Clarke, Johan Óstlund, Tobias Wrigstad: Ownership Types: A Survey. In Aliasing in Object Oriented
Programming. LNCS: Springer, 15-58 (2013).
[16] Werner Dietl, Sophia Drossopoulou, Peter Múller: Separating ownership topology and encapsulation with
Generic Universe Types. In ACM Transactions on Programming Languages and Systems: ACM:20:1-20:62,
(2011).
[17] OMG: Unified Modeling Language(UML: Version 2.4.1. Object Management Group, http://www.omg.org
/spec/UML/2.4.1 (2011).
[18] OMG: Object Constraint Language(OCL: Version 2.3.1. Object Management Group, http://www.omg.org/
spec/OCL/2.3.1 (2012).
[19] Martin Gogolla, Fabian Búttner, Mark Richters: USE: A UML-based specification environment for
validating UML and OCL. In Science of Computer Programming (2007): Elseveir, 27-34 (2007).
[20] Jagadeeswaran Thangaraj, SenthilKumaran U: Mapping of USE Specifications into Spec#. In International
Workshop OCL and Textual Modeling OCL 2107, July 20, 2017, Marburg, Germany, co located with the
Software Technologies: Applications and Foundations (STAF 2017).
 IJSER

http://www.ijser.org/
http://www.ittoday.info/ITPerf%20ormance%20Improvement/Articles/2012-06Otero.html
http://www.ittoday.info/ITPerf%20ormance%20Improvement/Articles/2012-06Otero.html
http://www.ittoday.info/ITPerf%20ormance%20Improvement/Articles/2012-06Otero.html
http://www.omg.org/

